

Testing for Human Effects

Jenny Odum

Talk Outline

- Regulatory requirements for ED testing
- Tests for effects on human health
 - Current pesticide tests
 - Specific tests for ED
- Examples of results obtained using vinclozolin as a case study
- Prospects for testing in the future

Regulatory requirements for testing for EDs

 REACH (1907/2006)- Regulation concerning the Registration, Evaluation and Restriction of Chemicals

- Regulation on Plant Protection Products (EC 11/07/2009 replacing Directive 91/414/EEC)
- Regulation on Biocides

US EPA Tier 1 screening

Tests for effects on human health

Standard regulatory toxicity tests

- Standard pesticide registration packages already include many tests with endpoints relevant to the assessment of ED potential.
- These include repeat dosing studies, carcinogenicity tests, studies in pregnant animals.
- Metabolism studies are also very important and may lead to additional toxicity studies on metabolites.

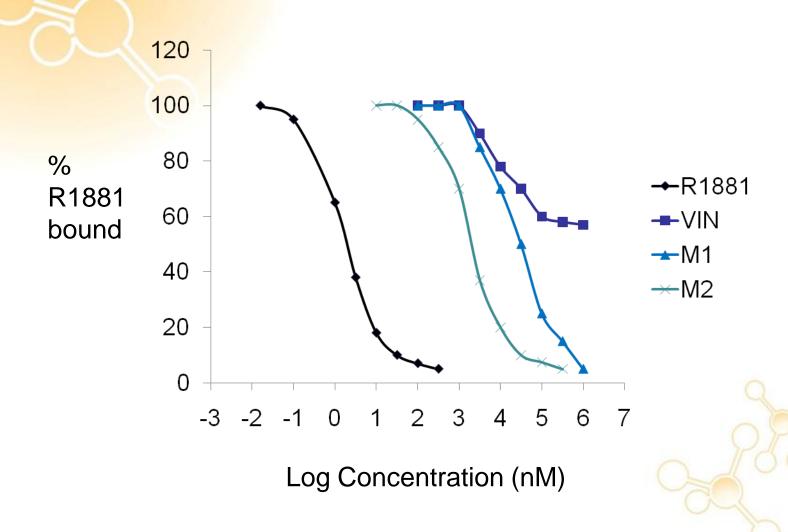
Standard regulatory toxicity tests useful for ED assessment

Test	Endpoints useful for endocrine assessment	Assessment
Repeat dose toxicity studies: 28d, 90d 1yr studies in rat, mouse, dog	Organ weights and histopathology of: Ovary, uterus, vagina Testes, sex accessory organs Thyroid gland Adrenals Pituitary gland Mammary gland Liver	Hazard and risk
Carcinogenicity studies: rat, mouse	As above but including neoplastic analysis	Hazard and risk

Standard regulatory toxicity tests useful for ED assessment

Test	Endpoints useful for endocrine assessment	Assessment
Reproduction studies: rat	Target organs (ovary, uterus, vagina, testes, sex accessory organs, thyroid, adrenals, pituitary gland, mammary gland, liver) Sexual maturation (vaginal opening, preputial separation) Reproduction Fertility Post-natal development	Hazard and risk
Developmental studies: rat, rabbit	Foetal development Ovary, uterus, vagina (maternal)	Hazard and risk

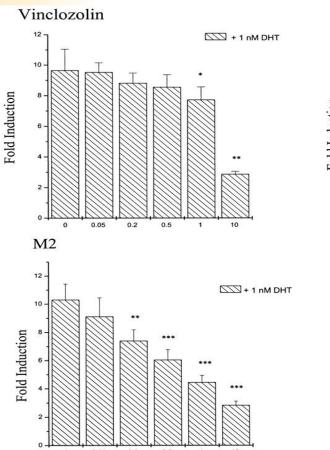
OECD Conceptual framework

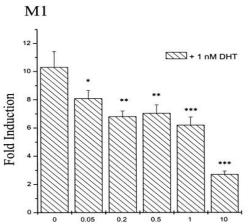

US EPA EDSP tests

Vinclozolin as a case study

Assay	Estrogen/Androgen Receptor Binding
Position	OECD Level 2, US-EPA Tier 1
Purpose	To identify chemicals that bind to ER/AR.
Assessment	Hazard assessment only
Design	ER from rat uterus or recombinant protein is incubated with estradiol and chemical. AR from rat prostate or recombinant protein is incubated with R1881 (a strong ligand) and chemical.
Endpoints	Binding curves and IC50 (molar concentration of chemical which inhibits 50% of binding by estradiol/R1881).

AR binding: vinclozolin example



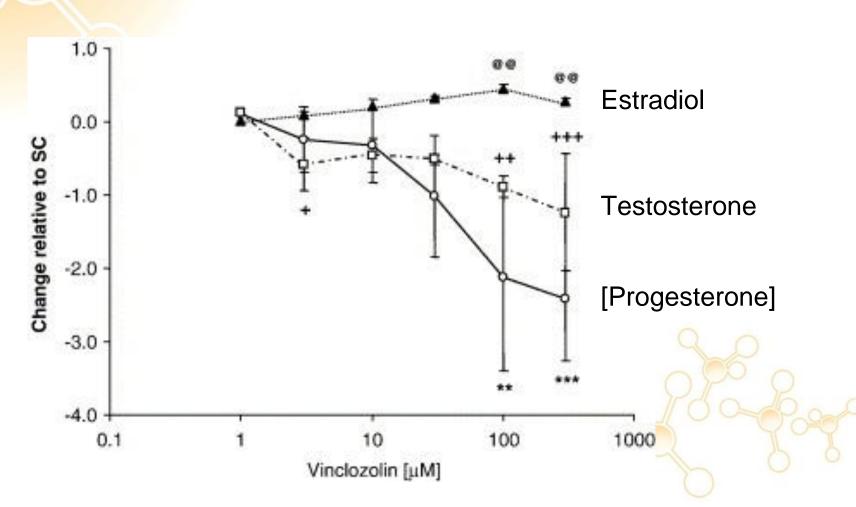

Estrogen/Androgen Receptor binding

What it tells you	What it doesn't
Chemical binds to receptor	Whether it is an agonist or antagonist.
Potency of binding	Whether this occurs in vivo.
	What the phenotypic
	consequences may be
	in vivo.
	Whether it has other
	activities.

Assay	ER α and AR Transcriptional Activation
Position	OECD Level 2, US-EPA Tier 1
Purpose	To identify chemicals that bind to ER/AR and alter gene transcription.
Design	HeLa cells (stably transfected with hERα/AR expression construct) are incubated with chemical.
Endpoints	Measurement of bioluminescence reflecting changes in gene transcription.

AR transcriptional activation: vinclozolin example

Wilson et al (Toxicol. Sci. 2002)

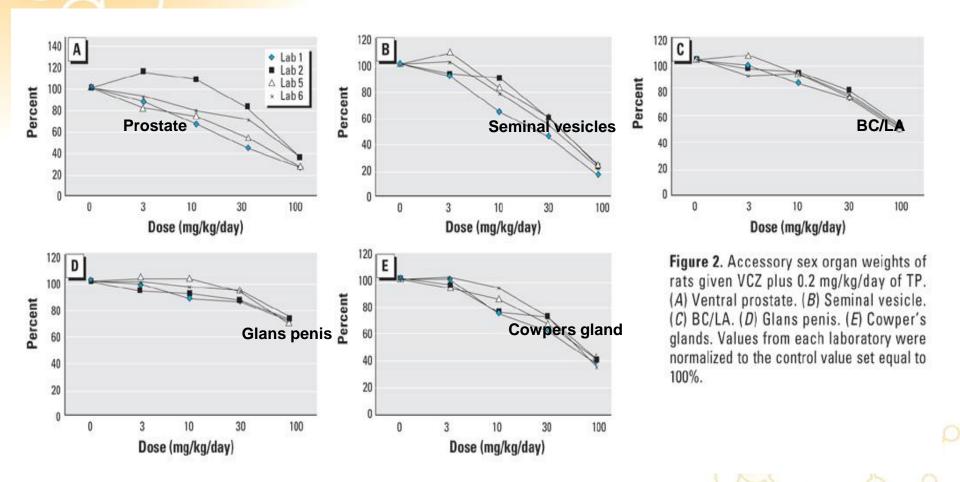


ER and AR transcriptional activation

What it tells you	What it doesn't
Chemical binds to receptor and triggers transcription.	Whether this occurs in vivo.
Whether it is an agonist or antagonist	What the phenotypic consequences may be in vivo.
Potency of transcriptional activation	Whether it has other activities.

Assay	Steroidogenesis H295R Assay
Position	OECD Level 2, US-EPA Tier 1
Purpose	To detect chemicals that affect the synthesis of sex steroid hormones.
Design	H295R cells contain steroid hormone synthesis pathways. Cells are incubated with chemicals.
Endpoints	Estradiol and testosterone production from H295R cells.

Steroidogenesis assay: vinclozolin example



Steroidogenesis H295R Assay

What it tells you	What it doesn't
Chemical interferes with	What the exact
enzymes of	mechanism is
steroidogenesis	
	Whether this occurs in
Whether it induces or	vivo.
inhibits	
	What the phenotypic
Potency of interference	consequences may be
	in vivo.
	Whether it has other
	activities.

Assay	Uterotrophic and Hershberger Assays
Position	OECD Level 3, US-EPA Tier 1
Purpose	To detect (anti)-estrogenic/ (anti)-androgenic chemicals.
Assessment	Hazard assessment only
Design	Immature or castrated adult rats are administered chemical for 3/10 days using two test groups.
Endpoints	Uterine/SAT weight is measured and compared with controls.

Hershberger assay: vinclozolin example

Hershberger and uterotrophic assays

	What it tells you	What it doesn't
7	Chemical interacts with	Whether the effects will
	AR/ER to	be seen in "intact"
	increase/decrease	animals
	reproductive organ	
	growth in vivo	Whether the effects are
		adverse (ie affect
	Whether it is agonist or	reproduction,
	antagonist	development etc)
	Potonov of offoct	Whether it has other
	Potency of effect	activities.
	ADME effects may also	activities.
	be demonstrated	

www.regulatoryscience.com

Assay	Pubertal Male Assay
Position	OECD Level 4, US-EPA Tier 1
Purpose	To detect chemicals with antithyroid, androgenic, or antiandrogenic activity or that alter pubertal development via changes in gonadotropins, prolactin, or hypothalamic function.
Design	Male rats are administered chemical from post-natal day (PND) 23 to PND 53 (31 days) using two test groups.
Endpoints	Growth (body weight) Age and weight at preputial separation. Organ weights and histology including sex accessory tissues and thyroid. Serum hormones.

Pubertal male assay: vinclozolin example

Vinclozolin (orally administered from pnd 23-53, 30-100 mg/kg/day):

- Delayed pubertal maturation
- Reduced growth of sexual accessory organs and epididymides
- Increased levels of sex hormones (LH, testosterone, estradiol).

Pubertal male assay

What it tells you

What it doesn't

Chemical causes phenotypic changes in reproductive/sex organs and thyroid growth *in vivo* in intact animal via various mechanisms

Effects on sexual maturation

Possibly whether it is agonist or antagonist

Potency of effects

ADME effects may also be demonstrated

Whether the effects are adverse (ie affect reproduction, development etc)

What the mechanism of action is.

www.regulatoryscience.com

Assay	Updated OECD TG407 (28 day rodent oral toxicity study)
Position	OECD Level 4
Purpose	Provides information on possible health hazards likely to arise from repeated exposure 28d, including effects on the nervous, immune and endocrine systems.
Assessment	Hazard and risk
Design	Male and female rats/mice are administered chemical (orally) for 28d. Dosing starts at approx 7 weeks of age. Three treatment groups per sex.
Endpoints	As for TG407 but now including sex organ and accessory tissue weights and histology. Some optional endpoints including thyroid hormones.

www.regulatoryscience.com

Enhanced 28d oral toxicity test (TG 407), male and female rat: vinclozolin example

Vinclozolin (3-200 mg/kg/day):

- Reduced growth of sexual accessory organs and epididymides (no histopathological changes)
- Caused slight increase in estrus cycle length in females
- Altered levels of sex hormones in both sexes (in males LH & estradiol increased; in females LH increased & testosterone decreased).
- Thyroxine decreased, TSH increased but no thyroid histopath changes.

TG407 assay

What it tells you	What it doesn't
Chemical causes phenotypic	Whether there effects on
changes in reproductive/sex	sexual maturation
organs and thyroid growth in	
vivo in intact animal via various	Whether the effects are
mechanisms	adverse (ie affect reproduction,
	development etc)
Possibly whether it is agonist	. ·
or antagonist	What the mechanism of action
	is.
Potency of effects	Q O
	May be insensitive to weak
ADME effects may also be	chemicals
demonstrated	
	Some endpoints are optional

Standard reg test and ED test

Assay	Mammalian 2 generation (TG416 enh)	
Position	OECD Level 5, US-EPA Tier 2	
Purpose	To provide general information on the effects of a test substance on the integrity and performance of the male and female reproductive systems, and on the growth and development of the offspring.	
Assessment	Hazard and risk	
Design	Continuous administration of compound (orally), prior to and during mating, gestation, lactation, to termination after weaning of the F2 generation. Three treatment groups.	
Endpoints	Reproduction, parturition, AGD, lactation, postnatal development. Puberty onset, sexual development, sperm parameters, oestrus cycle parameters, organ weights, histopathology.	

Mammalian 2 generation (TG416 enh): vinclozolin example

2 generation study with dietary administration 40ppm=2-6mg/kg (L), 200ppm=11-30mg/kg (M), 1000ppm=57-150mg/kg (H)

GEN	MALES	FEMALES
F0	SAT wt↓ & histopath (H), LH&FSH↑, T3&T4↓(H)	Ovaries histopath (H), T3&T4↓(H)
F1	SAT wt↓ & histopath (M&H), abnormal ext genitalia LH&FSH↑, T3&T4↓(H), bwt pnd21↓(H), perinatal AGD↓(H), nipples↑(M&H), age at PPS↑ Fertility index↓ (H) for 1st a	Ovaries wt↑ & histopath (H), T4↓(H), bwt pnd21↓(H),
F2	SAT wt↓(H), abnormal ext genitalia, perinatal AGD↓(M&H), nipples↑(M&H),	No changes observed

2-Generation test

What it tells you

Chemical causes phenotypic changes in reproductive/sex organs and thyroid growth in vivo in intact animal via various mechanisms

Chemical has an adverse effect on reproduction.

Chemical has an adverse effect on development (post-natal, sexual).

Chemical has an adverse effect on sexual behaviour.

Potency of effects

ADME effects are demonstrated

What it doesn't

What the mechanism of action is.

Older studies may not contain ED sensitive endpoints.

Summary

- ED has a high profile in regulations for human and environmental health
- Within EU, acceptable criteria for defining ED are needed in order to protect health but allow the use of valuable chemicals.
- Many tests for ED have now been validated.
- In the US, mandatory testing has started but in the EU there is no formal regulatory framework.
- Use in regulatory frameworks will lead to some tests being discarded in favour of more robust tests.
- All the tests are being used by research groups.

What the future holds

- New endpoints for existing tests eg
 - Effects on mammary glands
 - Late onset changes eg premature reproductive senescence
- Addition of new tests for additional hormonal systems eg
 - Glucocorticoid system
 - Receptor cross talk (eg AhR, PPARs)
- Involvement of EDs in obesity, diabetes etc
- Developmental neuroendocrine effects

Thank-you for listening!

jenny.odum@regulatoryscience.com

07720 811615

